Extras do Firefox
  • Extensões
  • Temas
    • para o Firefox
    • Dicionários e pacotes de idiomas
    • Outros sites de navegadores
    • Extras para Android
Iniciar sessão
Pré-visualização de Local Manga Translator

Local Manga Translator por Camekan

Local Manga Translator allows you to read raw Manga (Japanese), Manhwa (Korean), and Manhua (Chinese) by capturing text from your browser and translating it using a powerful AI server running locally on your computer.

Algumas funcionalidades podem requerer pagamentoAlgumas funcionalidades podem requerer pagamento
0 (0 reviews)0 (0 reviews)
Transferir o Firefox e obter a extensão
Transferir ficheiro

Metadados da extensão

Acerca desta extensão
🦊 Firefox Add-on Description & Instructions

⚠️ IMPORTANT: REQUIRES COMPANION SCRIPT
This add-on is a "connector" tool. To perform the translation, you must run the free companion Python script (manga_server.py) on your computer.

✨ Key Features
  • Universal Hardware Support: Works on NVIDIA (CUDA), AMD/Intel (Vulkan), or CPU.
  • Specialized Japanese OCR: Uses Manga-OCR to read vertical, handwritten, and messy manga text perfectly.
  • Advanced Bubble Detection: Now uses Comic-Text-Detector (specialized for Manga/Manhwa) to accurately split connected bubbles and ignore background noise.
  • Smart Korean Mode: Uses PaddleOCR for high-accuracy recognition of Korean webtoons.
  • Natural AI Translation: Connects to local LLMs (like Qwen, Llama 3) for human-quality translation.
  • 100% Private & Free: No API keys, no monthly fees. Everything runs offline.



🛠️ Step-by-Step Installation Guide

Step 1: Install Visual Studio Build Tools (Windows Only)
  1. Download Visual Studio Build Tools 2022 from the Microsoft website.
  2. Run the installer.
  3. CRITICAL: Select the workload named "Desktop development with C++".
  4. Ensure the checklist on the right includes "Windows 10/11 SDK" and "MSVC... C++ x64/x86 build tools".
  5. Click Install and wait for it to finish.

Step 2: Install Python
  1. Download Python 3.10.11 from python.org.
  2. CRITICAL: During installation, check the box "Add Python to PATH".

Step 3: Download & Setup the Server Files

1. Get the Main Script
  • Download manga_server.py from thehttps://github.com/Camekan/Manga_server.py/blob/main/manga_server.py and place it in a new folder (e.g., C:\MangaTranslator).

2. Get the Comic Detector (Critical Step)
  • Download this ZIP file: https://github.com/dmMaze/comic-text-detector/archive/refs/heads/master.zip
  • Extract the ZIP. You will see a folder named comic-text-detector-master.
  • RENAME that folder to: comic_text_detector
  • ⚠️ Important: Use underscores _, not dashes -.
  • MOVE this folder next to manga_server.py.

3. Get the Detector Model (Optional - Auto-downloads on first run)
  • The script will try to download this automatically. If it fails, do this:
  • Download the model file: https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.2.1/comictextdetector.pt
  • Create a new folder named models inside your comic_text_detector folder if it isn`t there..
  • Place the .pt file there.
  • Correct Path: C:\MangaTranslator\comic_text_detector\models\comictextdetector.pt

Your folder must look exactly like this:

MangaTranslator/
├── manga_server.py
└── comic_text_detector/ <-- The folder you renamed
├── inference.py <-- File inside
├── basemodel.py <-- File inside
└── models/ <-- Folder inside
└── comictextdetector.pt

Step 4: Install Dependencies

Open Command Prompt (cmd) inside the folder you extracted and run these commands:

1. Install Basic Tools:

pip install flask manga-ocr pytesseract pillow opencv-python numpy requests

2. Install Korean OCR (PaddleOCR):

pip install paddlepaddle paddleocr protobuf==3.20.3

3. Install AI Engine (Choose Your Hardware):
  • Option A: NVIDIA Users (Best Performance)

pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124
  • Option B: AMD / Intel Users (Vulkan Mode)
  • Download and install the Vulkan SDK.
  • Run this command:

set CMAKE_ARGS="-DGGML_VULKAN=on" && pip install llama-cpp-python --upgrade --force-reinstall --no-cache-dir
  • Option C: CPU Only (Compatible but Slower)

pip install llama-cpp-python

Step 5: Get an AI Model
  1. Download a .gguf model (Recommended: Qwen2.5-14B-Instruct-Q4_K_M.gguf) from HuggingFace.
  2. Open manga_server.py with a text editor (like Notepad) and set the MODEL_PATH to point to your downloaded file.

Step 6: Run & Read!
  1. Double-click manga_server.py to start the server.
  2. First run note: It will automatically download the detection model (~100MB). Wait for it to finish.
  3. Open a manga page in Firefox.
  4. Press Alt+Q (or your custom hotkey) and draw a box over the text!

🔗 Download the Script Here: https://github.com/Camekan/Manga_server.py/blob/main/manga_server.py
Bug Reports: Please report issues on the GitHub Issues page.
Rated 0 by 0 reviewers
Iniciar sessão para avaliar esta extensão
Não existem avaliações ainda

Avaliação de estrelas guardada

5
0
4
0
3
0
2
0
1
0
Ainda sem análises
Permissions and data

Permissões necessárias:

  • Aceder aos seus dados para todos os sites

Permissões opcionais:

  • Aceder aos seus dados para 127.0.0.1:5000
  • Aceder aos seus dados para 127.0.0.1
Saber mais
Mais informação
Ligações do extra
  • Site de apoio
Versão
2.8
Tamanho
16,04 KB
Última atualização
há 19 dias (21 de jan de 2026)
Categorias relacionadas
  • Suporte de idiomas
  • Fotos, música e vídeo
Licença
MIT License
Política de privacidade
Ler a política de privacidade para este extra
Histórico de versões
  • Ver todas as versões
Adicionar à coleção
Reportar este extra
Ir para a página inicial da Mozilla

Extras

  • Acerca
  • Blogue de extras do Firefox
  • Workshop de extensões
  • Central do programador
  • Políticas de programador
  • Blogue da comunidade
  • Fórum
  • Reportar um erro
  • Guia de análise

Navegadores

  • Desktop
  • Mobile
  • Enterprise

Produtos

  • Browsers
  • VPN
  • Relay
  • Monitor
  • Pocket
  • Bluesky (@firefox.com)
  • Instagram (Firefox)
  • YouTube (firefoxchannel)
  • Privacidade
  • Cookies
  • Informação legal

Exceto onde anotado o contrário, o conteúdo neste site está licenciado sob a licença Creative Commons Atribuição-CompartilhaIgual v3.0 ou qualquer versão mais recente.